Excel Macro Combines
Financial and Non-Financial Data
By Dan Hill, CMA*

An unavoidable fact of life is that data must be gathered before analy-
sis can begin. Banking and other industries measure effectiveness using
financial data, found on the General Ledger (GL) system, and non-finan-
cial data, found on core application systems. Data must be collected
from different computer systems, and therein lies the problem. How to
blend the data together fast? One way to combine financial and non-fi-
nancial data is to use Microsoft’s Visual Basic for Applications (VBA),
a.k.a. Excel macros.

To demonstrate how easily Excel macros can manage such an analyti-
cal challenge, this article examines a macro that combines financial and
non-financial data for each item in a list. Here a list of bank branches is
used, but with simple modifications the same macro will cycle through
any type of list: customers, contacts, products, regions, departments,
lots, assets, dates, file-names, etc., etc. The many purposes to which
you can apply this macro are limited only by your needs and imagina-
tion.

I 3™¥NOId

(aew urew uny)
1¥viS

ON

sdajs o1seq Inoj sey o1den

4 Ppes98d0id
swey §Y
oy
(wey pron 19feS)
Y| wey Yol
yBnouyj des 7
son4 mequadQ ¢
:sasoy) dnyess ‘|

a4 ndnQ e o

:38J04D UMOPINUS ¥

SN42eQ IO «
spjindinoenes «

FOUR BASIC STEPS
The macro has four basic steps:

1) Startup chores,

SINS3H 2AES -
egeq) feroue4-uoN AdoD «
@eq o AdoD -

woy yoeo 10} SoeW-qNS T

(

(2) Selecting each item in a list, one item at a time,

(3) For each item performing one or more operations, and
(

4) Shutdown chores (See Figure 1).

*Vice President, Bank of America, dnhill @mindspring.com. Mr. Hill has an MBA fron George Mason
University.

/AL AND NON-FINANCIAL DATA 39
38 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING EXCEL MACRO COMBINES FINANCIAL




Macro automation does only part of the job. The macro retrieves data
for each branch and saves the results, but all calculations are performed
using normal Excel formulas. This way data is pulled into the familiar,
and powerful, spreadsheet environment. Further, the list of items — in
this case bank branches — is easily maintained in its own worksheet.

Most importantly, data files are accessed in whatever structure they
happen to arrive. ASCII or text files received from mainframe systems
must be converted to Excel workbooks, but the structures of these files
do not need to be altered.

First Things First

Before coding the VBA language you must attend to some preliminary
tasks. For starters prepare the list of items — or branches — that the
macro will cycle through. Branches are represented by cost center num-
bers, which are maintained in the sheet CC_List (see Table 1). The
CC_List sheet also contains each cost center's branch name and save
sheet name.

The next preparatory task is setting up the main workbook, which re-
ceives the disparate data and performs the calculations. | call the main
workbook MasterFile and give it a filename of MyMacro.xls. A GL_Data
sheet is created in the main workbook to receive and display the im-
ported GL data (see Tables 2 and 3).

Also included in the main workbook is the Calculator sheet (see Table
4). The Calculator sheet is where your hard work pays off. It is here that
you will reference imported data, perform calculations, and display pow-
erful relationships.

Finally, consider the structure of the external data files. The simplest
structure is to list fieldnames across the columns and records (e.g., cost
centers) down the rows, a flat table. (Table 3 is an example of a flat
table). The macro described here retrieves data from just such a struc-
ture. Data can come in other structures, of course, and with modifica-
tions the macro can handle most any structure.

Your preparatory tasks are done. Now it’'s time to code the VBA lan-
guage and make the whole thing work!

40 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

B TABLE 1

| CC_List Sheet |
# List of Cost Centers to Cycle Through i
| |

CostCtr {CCName .CCSaveSheet |

101 |MainBranch :CC_101 B

103 Third and Maple Branch  {CC_103 4

105 River Run Branch :CC_105 1

- 106 Forest Hill Branch :CC_106 5

110 Freedom Ave Branch ‘CC_110 o -‘..w.i

} S ©

GL_Data Sheet

I Receives external GL data : N

. Copied

) FieldNames ' GL Data
CostCtr 110

f Loans 645

i Checking Deps L 1,789 |

 Savings Deps o 1,458

| Direct Expenses ; 80

| NIBT 19;

EXCEL MACRO COMBINES FINANCIAL AND NON-FINANCIAL DATA 41




ONILNNODOY LNFWIDVYNYW ® LSOO ¥NVE 40 TYNUNOr 3HL  Zp

O I S eeLT lare 011

881 88L, 089'L OLV'ST €89'€ 1. 901

LS% gL0'T . 1es96l 44§74 . 80L°8 =)

061 96.L e 08571 068°LT 0Sv'9.

141 929 02l'S eIe’'or , lesve ..

149IN Sosuodxg 10941Q | sdeq sbulnes | sdeq bupoayd mcmo,d

S R T (samans a[qe) ED ¥) o1y BIER T [Py
m_x elego 9|4 ereqg 19

£p VLVA TYIONYNIZ-NON ANV TYIONYNIS SINIEWOO OHOVIN 130X3

95s WEm 616

“POVIRALEIN

1%

1N0OAV 378VL LV1d

Junowy Jod [N

- m..uqsmm 'y Jod wuereq aferasy

STOUETNI[e9 SOEW e e7ep papodun saoualaey

193G Joje|najes

b 318Vl



Let's Write a Macro

You'll type the Visual Basic code into the main workbook — this way
the code is saved and retrieved with the main workbook. The steps taken
to open the Visual Basic editor depend on your version of Excel.

For Excel version 97: Open the main workbook file. Choose Tools,
Macro, Visual Basic Editor. Once inside the VBA editor, choose |nsert
from the toolbar, then Module. The VBA module contains the VBA editor,
which is designed to handle the Visual Basic code.

For Excel version 95 or earlier: Open the main workbook file. Choose
Insert, Macro, Module. The Module sheet contains the VBA editor, which
is designed to handle the Visual Basic code.

For Everybody: When writing VBA code use an apostrophe ' to make
comments. Comments placed throughout your code will make it much
easier to review and debug. Ditto for indenting. The VBA program ignores
white spaces, so why not indent, indent, indent!

Below describes the VBA code in Figure 2 (see page 46).

FIGURE 2: VBA CODE

" MyMacro July 2000: Copies data by Cost Center from several data sources
" Declare Constants
Option Explicit

Private Const MasterFile = "MyMacro.xls” "The main workbook
Private Const DataDir = "D:\macros\” 'Dir for input and output
Private Const GLFile = “GLData.xIs” ‘GL Data file

Private Const SaveFile = “Results.xIs” 'File to save results

" Declare Variables

Dim CostCtr As String ‘Cost center being processed

Dim CCSaveSheet As String ‘Sheet name to save CostCtr's results
" Do_It_All Macro: The main macro
Sub Do_It_All()

Workbooks.Add "Create the output file

ActiveWorkbook.SaveAs filename:=(DataDir & SaveFile)
Workbooks.Open filename:=(DataDir & GLFile) ~ 'Open data file
Windows(MasterFile).Activate 'Go to cost center list

Sheets("CC_List").Select )
continued on next page

44 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

Cells(6, 1).Select 'Select the 1st cost center

While ActiveCell <> "" - 'While selected cellis not blank
CostCtr =ActiveCell.Text 'Set cost center variable
CCSaveSheet = ActiveCell.Offset(0, 2).Text 'Set sheetname variable
Copy_GLData "Sub-macro: Copy GL Data for selected cost ctr
Save_Results 'Sub-macro: Save results for selected cost ctr
Windows(MasterFile).Activate 'Go to cost center list
Sheets("CC_List").Select
ActiveCell Offset(1, 0).Select "Move down one row to next cost center
Wend 'Repeat while loop for next cost center
Windows(SaveFile).Activate 'Save the output file
ActiveWorkbook.SaveAs filename:=(DataDir & SaveFile)
ActiveWorkbook.Close ‘Close the output file
Windows(GLFile).Activate ‘Close the data file
ActiveWorkbook.Close
End Sub "The main macro comes to an end

' Copy_GLData Sub-Macro: Copies GL Data for selected cost center
Sub Copy_GLData()

Windows(GLFile).Activate 'Go to GL data file
Sheets("Sheet1”).Select
Cells(6, 1).Select 'Select first cost center in file
Do 'Initiate a do loop
If ActiveCell =" Then "If selected cell is blank (EOF)
End 'End execution: CostCtr has no data
Elself ActiveCell <> CostCtr Then 'Else If selected cell not equal
ActiveCell.Offset(1, 0).Select "to CostCtr variable, then move
End If ‘down one row to next cost ctr
Loop Until ActiveCell = CostCtr "Loop until selected cell = CostCtr variable

‘Select for copying GL data for selected CostCtr
Range(ActiveCell, ActiveCell.Offset(0, 5)).Select
Selection.Copy

Windows(MasterFile).Activate 'Copy the GL data
Sheets("GL_Data").Select
Range("B7").Select
Selection.PasteSpecial Paste:=xIValues, Transpose:=True

End Sub 'Return control to Do_It_All main macro

continued on next page

EXCEL MACRO COMBINES FINANCIAL AND NON-F/NANC/AL DATA 45



' Save_Results Sub-Macro: Saves selected CostGtr's results to Output file
Sub Save_Results()

Windows(SaveFile).Activate 'Go to the Qutput file

ActiveWorkbook.Sheets.Add ‘Create a new sheet

ActiveSheet.Name = CCSaveSheet "Name sheet CostCtr's sheetname

Windows(MasterFile).Activate 'Go to the Calculator sheet
Sheets("Calculator”).Select
Calculate 'Calculate before copying
Cells.Select 'Mark to copy all cells
Selection.Copy

Windows(SaveFile).Activate 'Go to the Output file

Sheets(CCSaveSheet).Select 'Go to selected CostCtr's sheet
Cells.Select ‘Select all cells
Selection.PasteSpecial Paste:=xIValues 'Paste values
Selection.PasteSpecial Paste:=xIFormats 'Paste formats

End Sub 'Return control to Do_It_All main macro

Much of what you type when coding must be typed exactly as shown.
These are code keywords or operators, required by the VBA language.
But the code writer — that's you — makes up nicknames for variables
and macro programs. |'ll use BOLD TYPE to indicate made-up nick-
names. You do not need to bold made-up names when you're writing
code. I'm bolding here so you can distinguish between required syntax
and made-up nicknames.

The first line of code gives a titie and a brief description.

"MyMacro July 2000: Copies data by Cost Center

Notice the apostrophe, which tells the macro to ignore the rest of the
line; it's for human consumption only!

Next you declare the constants. Constants are values that won'’t change
as the macro runs. For example, it's a good idea to declare as constants
file names and directories. This way you won't bury file names and direc-
tories deep inside the VBA code.

Option Explicit ‘
Private Const MasterFile = "MyMacro.xIs”
Private Const DataDir = "D:\macros\”

46 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

The constants assigned are nicknamed MasterFile and DataDir.
MasterFile is equal to an Excel filename, and DataDir is equal to a directory.

The Option Explicit statement forces you to declare constants or vari-
ables (discussed below) before using them in the macro. Believe it or
not, this is a big help. It keeps you from accidentally misspelling a con-
stant or variable name.

Next you declare — and nickname — each variable.

Dim CostCtr As String

Variables are temporary values that change as the macro runs. For
example, the cost center currently being processed is a variable, the
CostCtr variable. The value of the CostCtr variable will change once the
current loop is completed and it’'s time to move on to the next cost cen-
ter.

The Do-It-All

Now it's time to code the main macro. | call it the Do_It_All macro. The
main macro is the big boss that controls the whole show. It does the
housekeeping and calls up sub-macros to do specific jobs. Use a Sub
statement to start the macro — or sub-procedure — nicknamed the
Do_It_All

Sub Do_It_All()

The first order of business is the start-up chores, which include creat-
ing the SaveFile workbook to receive the results. #

Workbooks.Add
ActiveWorkbook.SaveAs filename:=(DataDir & SaveFile)

The new workbook is saved to establish its file name for reference
later in the macro. The ampersand & symbol combines the constants
DataDir and SaveFile to create a complete path and filename for Excel
to use: D:\macros\results.xls.

Another start-up chore is opening the data files so they'll be available
for use.

Workbooks.Open filename:=(DataDir & GLFile)

EXCEL MACRO COMBINES FINANCIAL AND NON-FINANCIAL DATA 47



Let's Go Stepping

The startup chores are done, and the main macro can now begin
stepping through the list of items — in this case the cost center list. The
macro activates the main workbook window and selects the CC_List
sheet (Table 1).

Windows(MasterFile).Activate
Sheets("CC_List").Select

You Activate a window but Select a sheet. Notice the quotation marks
around the sheet name “CC_List". Whatever is inside quotes is interpreted
exactly as typed; in this case the tab name of the sheet you're selecting.
On the other hand MasterFile is not surrounded by quotes, which tells the
macro that MasterFile is a variable or a constant and requires a value.

Now select the cell containing the first cost center in the list. There are
different ways to select a cell. For example, the results of the following
two lines are identical:

Range("A6").Select ‘Select cell A6
Cells(6, 1).Select 'Select row 6, column 1 (cell A6)

The Cells nomenclature is in row by column order. Using row by col-
umn numbers has its advantages, as you will soon see.

Next comes a While loop, which is used to move down the list of cost
centers one at a time.

While ActiveCell<> ""

The object ActiveCell is VBA code for the selected cell. The above
says while the ActiveCell is not<>blank *”, perform the following opera-
tions. You want the While loop to stop when a blank cell is reached, that
is, when you reach the end of the cost center list.

So, as long as the selected cell is not blank, then it contains a cost
center to manipulate. Assign the cost center number in the selected cell
(the ActiveCell) to the variable CostCitr.

CostCtr = ActiveCell. Text

For example, if the selected cell is A6 on the CC_List sheet, then
CostCtr is assigned the value 101 (see Table 1).

48 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

" Assign variables that are related to the current cost center using the
offset method.

- CCSaveSheet = ActiveCell.Offset(0, 2). Text

With the Offset method you offset or count, relative to the current posi-
tion, the numbers of rows and columns to move. In this case you're start-
ing at the cell containing the selected cost center (the ActiveCell) and
then offsetting no rows down and two columns to the right. If the selected
cell is A6 on the CC_List sheet, then CCSaveSheet is assigned the
value CC_101 (see Table 1).

Now that a cost center has been selected and the CostCtr variable as-
signed, it’s time to call up the sub-macros to do specific jobs for the cur-
rent CostCtr.

Copy_GLData
Save_Results

I's a good idea to put your more complicated routines into separate
sub-macros. This helps in designing and debugging your code. It also al-
lows you to “comment out” a sub-macro so it won't run. You do this by
putting a temporary apostrophe in front of the sub-macro’s name in the
Do_It_All main macro. This is a major convenience when building and
testing other sub-macros.

Finish the Do-It-All

I'm going to postpone discussing the sub-macros for a moment. For
now, let's finish going through the Do_It_All main macro.

Once all the sub-macros have run for the current cost center, then go
to the CC_List sheet and get the next cost center (see Table 1).

Windows(MasterFile).Activate
Sheets("CC_List").Select
Activecell.Offset(1, 0).Select

First go to the cell containing the cost center that's just completed (the
ActiveCell), and then move down one row to the next cost center.

The Wend statement comes next, telling the macro to go back to the
beginning of the While loop and execute the statements again with the
new cost center (the new ActiveCell). This will continue until all the cost

EXCEL MACRO COMBINES FINANCIAL AND NON-FINANCIAL DATA 49



centers have been processed and the blank cell at the bottom of the list
is reached.

Once all the cost centers are processed it's time for the shutdown
chores. First the output file is saved and closed.

Windows(SaveFile).Activate
ActiveWorkbook.SaveAs filename:=(DataDir & SaveFile)
ActiveWorkbook.Close

Then the data files are closed.

Windows(GLFile).Activate
ActiveWorkbook.Close

Finally, the End Sub statement tells the Do_It_All main macro to come
to a glorious end.

Do the Sub-Macro

The Do_lt_All main macro passes control temporarily to sub-macros
that do specific jobs for each cost center. The Copy_GLData sub-macro
copies external GL data into the main workbook. Begin the sub-macro
with a Sub statement and then select the first cell in the external GL data
file (Table 3).

Sub Copy_GLData( )
Windows(GLFile).Activate
Sheets("Sheet1”).Select
Cells(6, 1).Select

Test to see if the first cell is equal to the CostCtr variable, and if not,
move down one row and test the next cell. This continues until the
CostCtr variable is found. Use the Do loop to repeat steps until a condi-
tion is met.

Do
If ActiveCell ="" Then
End
Elself ActiveCell <> CostCtr Then
ActiveCell.Offset(1, 0).Select
End If
Loop Until ActiveCell = CostCtr

50 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

The above will find the CostCtr variable, or if it can't be found, then
end execution so you can discover why the current cost center has no
data.

Once you find the CostCtr variable in the GLData file, then copy its
range of data.

Range(ActiveCell, ActiveCell.Offset(0, 5)).Select
Selection Copy

The range to copy is from the ActiveCell (the selected cell) to the cell
offset by 0 rows and 5 columns. For example, A6:F6 for cost center 101
in Table 3.

The copy from range is pasted into the main workbook (Table 2).

Windows(MasterFile).Activate
‘Sheets(“GL_Data").Select
Range(“B7").Select
Selection.PasteSpecial Paste:=xIValues, Transpose:=True

The sub-macro Copy_GLData has finished its duties. The End Sub
statement returns control to the Do_It_All main macro.

Don’t Forget to Save!

The Save_Results sub-macro saves the results for the current CostCtr
before continuing onto the next cost center. You'll use the SaveFile work-
book, which was created when the Do_It_All main macro first fired-up.
Begin with a Sub statement, then go to the SaveFile workbook and cre-
ate a sheetto receive the results.

Sub Save_Results ()
Windows(SaveFile).Activate
ActiveWorkbook.Sheets.Add
ActiveSheet.Name = CCSaveSheet

The variable CCSaveSheet comes from the cost center list on the
CC_List sheet (Table 1).

The results for the current CostCtr are located in the main workbook
on the Calculator sheet.

Windows(MasterFile).Activate
Sheets("Calculator”).Select

EXCEL MACRO COMBINES FINANCIAL AND NON-FINANCIAL DATA 51



It's a good idea to tell Excel to re-calculate before copying any results.
Calculate
Mark the entire sheet for copying using the Cells object.

Celis.Select
Selection.Copy

Return to the SaveFile workbook and paste your results onto the
CCSaveSheet.

Windows(SaveFile).Activate
Sheets(CCSaveSheet).Select
Cells.Select
Selection.PasteSpecial Paste:=xIValues
Selection.PasteSpecial Paste:=xIFormats

The Save_Results sub-macro has finished its job. The End Sub state-
ment returns control to the Do_It_All main macro so the next cost center
can fire-up.

A final note on sub-macros. Sub-macros do the specific chores you
need getting done. A big help in coding sub-macros is the Record func-
tion in the Visual Basic Editor. The Record function automatically writes
the sub-macro code as you manually perform the keyboard and mouse
operations. Copy the recorded sub-macro into the main workbook VBA
module, substitute variable names where needed, and add a line in the
Do_It_All main macro to activate it. Small modifications to the Do_It_All
main macro will handle the logic needed to cycle through your list of
items. In a nutshell that's how you can quickly modify the general frame-
work described here for your own purposes.

The Moment of Truth

Finally, you're ready to make the whole thing work! Open the main
workbook MasterFile, in my case MyMacro.xls. Select Tools on the tool-
bar, and then Macro. Highlight the Do_It_All macro and click Run.

And away she’ll go!

52 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING

Or maybe not. Murphy's Law will prevail over your carefully written
code. It's unlikely your code will run the first time, or the second or third
time, either.

When your code stops executing and the VBA error dialog box ap-
pears, click Debug to go to the line that's causing the problem. Fix it —
always easier said than done — and try to run the Do_It_All macro
again. (Excel 97 users: after fixing the problem reset the code in the VBA
editor by clicking Bun on the toolbar and then Reset.)

If you're persistent, sooner or later the Do_It_All macro will run. Your
screen will light up as Excel flies through the commands you have given
it with the VBA code. Although entertaining, the macro will run much
faster (and | mean much faster) if you turn the screen updating off. Make
this the first line in the Do_It_All main macro:

Apblication.ScreenUpdating:False

That's All, Folks!

Whew! That was a lot of stuff to go through. Was it worth it? Let’s see
what was accomplished with automation:

« Stepped through a list of items, in this case a list of branch cost
centers,

« Retrieved data for each item from both financial and non-financial
systems (for brevity only GL data was retrieved here),

« Performed complex spreadsheet calculations on the imported data,
and

« Prepared a report and saved the results for each cost center.

Macros allow you to economically combine data from disparate
sources. Macros allow you to do the analysis you've avoided in the past
due to excessive amounts of manual effort. Macros allow you to conduct
repetitive analyses, such as trend analysis and what-if sensitivity analy-
sis. Investing ten to twenty hours climbing the VBA learning curve can re-
turn automation that performs valuable chores for you. Chores that make
once impossible analysis possible. Chores that help you understand
what makes your company tick. Chores that make you the hero.

So, you decide. What is that worth?

EXCEL MACRO COMBINES FINANCIAL AND NON-FINANCIAL DATA 53



(1)

()

©)

C)

(5)

©)

@)

RULES OF THE VBA ROAD

Use an apostrophe ' to make comments on a line or part of a line.
Use comments generously throughout your code to explain what's
going on.

'This is a comment

Indent, Indent, Indent! Use indentation to outline the logic in your
code. VBA ignores white spaces, such as indentations, so indent
liberally to make your code easier to understand and debug.

Always declare variable and constant names before use. Just add
new variable names to the variable list at the beginning of the
macro.

Dim CostCtr as String

Private Const DataFile = "1Q99Data.xls"

Use quotes around a fixed object, such as the tab on a sheet.
Sheets(“1Q99Data").Select

Do not use quotes around a variable name.
Dim DataSheet as String
DataSheet = "1Q99Data”
Sheets(DataSheet).Select

Always use Option Explicit, which forces you to declare variable or
constant names before use. This eliminates the possibility that you
accidentally misspell a variable or constant name.

Option Explicit

Private Const DataFile = "1Q99Data.x|s"

Dim DataSheet as String

Use a space and an underscore _ to continue your code on the
next line. It is easier to read and debug your code when it is
viewed on one screen width.
Activecell.Value = Application.Sum(Range _
(Cells(BegRow, ColNum), Cells(EndRow, _
ColNum)))

54 THE JOURNAL OF BANK COST & MANAGEMENT ACCOUNTING




Table

Association for Management Information in Financial Services af

Contents

Journal of
Ban k COSt & Prologue
M an agement Re-THink Customer Segmentation for CRM Results
A cC oun t in g ROBERT GILTNER and RICHARD CIOLLI

Better Financial Planning with Balance Sheet Modeling

STEPHEN EASTBURN
Re-Think Customer Segmentation Zero-Based Staffing™ for Performance Improvement
for CRM Results ADAM ISLER

—ROBERT GILTNER and RICHARD CIOLLI—

Excel Macro Combines Financial and Non-Financial Data

Better Financial Planning DAN HILL

with Balance Sheet Modeling

== RIEFH R B The Forsaken Side of Risk Management:

Have Deterministic Approaches Gone Too Far?

Zero-Based Staffing™ for
W. RANDALL PAYANT

Performance Improvement
—ADAM ISLER—

Excel Macro Combines ’
Financial and Non-Financial Data

—DAN HILL—
The Forsaken Side of Risk Management: | ATIAN EN.
Have Deterministic Approaches ﬁ%ﬁgggxﬁmo RMATION

Gone Too Far?
—W. RANDALL PAYANT—

IN FINANCIAL SERVICES




